Examen

Juin 2022. Durée 2h

Toutes les réponses doivent être justifiées avec soin

Exercice 1. (5 points) Soit E un \mathbb{K} -espace vectoriel de dimension finie.

- 1. (3 points) Soit f un endomorphisme diagonalisable de E.
 - (a) Montrer que

$$E = \operatorname{Ker} f \oplus \operatorname{Im} f$$
.

 $Indication: Considérer l'ensemble\ I\ des\ indices\ des\ valeurs\ propres\ nulles\ de\ f\ et\ son\ complémentaire.$

- (b) Que pensez-vous de la réciproque?
- 2. (2 points) Soit p un endomorphisme de E.
 - (a) Montrer que si p est un projecteur alors $E = Ker(p) \oplus Im(p)$.
 - (b) En déduire que p est un projecteur sur Im(p) parallèlement à Ker(p).

Exercice 2. (Maîtrise des concepts) (4 points) Que pensez-vous des affirmations suivantes? Toute réponse non justifiée ne sera pas prise en compte.

- 1. Si A est une matrice réelle de taille $n \times m$, alors les matrices AA^T et A^TA sont semi-définies positives.
- 2. La somme de deux matrices diagonalisables est diagonalisable.
- 3. Un endomorphisme nilpotent d'un \mathbb{K} -espace vectoriel E de dimension finie est toujours diagonalisable? trigonalisable?
- 4. Soit M une matrice triangulaire. Alors M est nilpotente si et seulement si ses éléments diagonaux sont tous nuls.

Exercice 3. (Exercice du TD) (4 points) Soit φ l'application de $\mathbb{R}_4[X]$ dans $\mathbb{R}_4[X]$ qui à un polynôme P associe le polynôme $\varphi(P)$ défini par

$$\varphi(P)(X) = P(X+1).$$

On munit $\mathbb{R}_4[X]$ de sa base canonique $\beta := (1, X, X^2, X^3, X^4)$.

- 1. Montrer que φ est une application linéaire.
- 2. Donner la matrice A de φ dans la base β . A quoi cela vous fait-il penser?
- 3. Montrer que φ est bijective et donner son application réciproque.
- 4. Donner la matrice B de φ^{-1} toujours dans la base β .
- 5. En déduire la matrice inverse de A.

Exercice 4. (Décomposition de Dunford) (7 points) Soient E l'espace vectoriel des polynômes de degré inférieur ou égal à 3 à coefficients réels et f l'application définie sur E par

$$\forall P \in E, \quad f(P) = P' + P'' + XP(0).$$

Soit $\beta := (1, X, X^2, X^3)$ la base canonique de E.

- 1. Montrer que f est un endomorphisme de E.
- 2. Déterminer la matrice A de f relativement à la base β . Calculer son polynôme caractéristique P_A . En déduire que le spectre de A est égal à l'ensemble $\{-1,0,1\}$.
- 3. Déterminer le rang de f, son image Im(f) et son noyau Ker(f).
- 4. f est-il diagonalisable? En déduire son polynôme minimal μ_f .
- 5. L'endomorphisme $f^3 := f \circ f \circ f$ est-il diagonalisable? Si oui, déterminer une base dans laquelle la matrice A^3 de f^3 est diagonale.
- 6. Déterminer les projecteurs spectraux π_0 , π_1 et π_{-1} de l'endomorphisme f.
- 7. En déduire la décomposition de Dunford de f.

Soit d et n la décomposition de Dunford de f de matrices respectives A_d et A_n dans la base β .

8. Calculer e^{tA_d} et e^{tA_n} . En déduire la solution du système différentiel

$$X' = AX$$
, $X(0) = C$

où C est un vecteur donné dans \mathbb{R}^4 .