L1-Math 2B : Algèbre linéaire et géométrie

Examen : Session 2 Durée : 2 heures

JUSTIFIER VOS RÉSULTATS ET MONTRER LES CALCULS

(1) (5 points) (Questions du cours) Soit E un \mathbb{R} -espace vectoriel.

- (a) Soient F_1 et F_2 deux sous-espaces vectoriels de E. Montrer que $F_1 \cup F_2$ est un sous-espace vectoriel si et seulement si $F_1 \subset F_2$ ou $F_2 \subset F_1$.
- (b) Soit $h: E \to E$ un endomorphisme. Donner les définitions d'une valeur propre et d'un vecteur propre de h.
- (c) Soit $f: E \to F$ une application linéaire de l'espace vectoriel E vers l'espace vectoriel F. Décider, sans justification, si les énoncés suivants sont VRAIS ou FAUX.
 - (i) Si $\{v_1, \ldots, v_n\}$ est une base de E, alors $\{f(v_1), \ldots, f(v_n)\}$ est une base de l'image Im(f).
 - (ii) Si f est injective, alors dim $E \leq \dim F$.
 - (iii) Si dim $E \leq \dim F$, alors f est injective.
 - (iv) On suppose que dim(E) = 3. Si $\{v_1, v_2, v_3\}$ est une base de E, alors $\{v_1 + v_2, v_1 v_2, v_3 + v_1\}$ est aussi une base de E.
- (2) (4 points)

Soit $a \in \mathbb{R}$. On considère le système d'équations linéaires :

(S)
$$\begin{cases} 3ax + ay - 2z = -4 \\ ax + ay + 3z = 6 \\ 2x + y + z = 1 \end{cases}$$

- (a) Ecrire (S) sous forme matricielle. On appellera A sa matrice.
- (b) Pour quelles valeurs de a la matrice A est-elle inversible?
- (c) Calculer le rang de (S) en fonction de a.
- (d) Préciser, en utilisant la méthode du pivot de Gauss, pour quelles valeurs des nombres réels a le système (S) a zéro, une, ou une infinité de solutions. Résoudre le système pour a=0 et pour a=3.
- (3) (4 points) Déterminer les inverses des matrices suivantes lorsqu'elles existent. Donner aussi les rangs de ces deux matrices.

(i)
$$\begin{pmatrix} 1 & 0 & -1 \\ 3 & 2 & -1 \\ 2 & 1 & 1 \end{pmatrix}$$
 (ii) $\begin{pmatrix} -1 & 2 & 0 & 1 \\ 1 & 2 & -1 & 2 \\ 2 & 1 & 2 & 5 \\ -1 & 0 & 1 & 0 \end{pmatrix}$

(4) (4 points) Soient F, G les sous-espaces vectoriels de \mathbb{R}^4 donnés par $F = Vect(u_1, u_2, u_3)$ et $G = Vect(v_1, v_2, v_3)$, où

$$u_1 = \begin{pmatrix} 1 \\ 2 \\ 1 \\ 0 \end{pmatrix} \quad u_2 = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} \quad u_3 = \begin{pmatrix} 1 \\ 0 \\ -1 \\ 1 \end{pmatrix}$$

et

$$v_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \\ 1 \end{pmatrix}$$
 $v_2 = \begin{pmatrix} 1 \\ -1 \\ 0 \\ 1 \end{pmatrix}$ $v_3 = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \end{pmatrix}$

- (a) Trouver une base de F et une base de G.
- (b) Trouver une base de $F \cap G$.
- (5) (3 points) Soit $E = \mathbb{R}[X]_{\leq 3} \subset \mathbb{R}[X]$ le sous-ensemble des polynômes de degré ≤ 3 .
 - (b) Donner une base \mathcal{B} de \overline{E} .
 - (c) Soit $h: E \to \mathbb{R}^2$ l'application définie par h(P) = (P(1), P'(1)), où P' est la dérivée de P. Montrer que h est une application linéaire.
 - (d) Donner la matrice $Mat(h; \mathcal{B}, \mathcal{C})$, où \mathcal{C} est la base canonique de \mathbb{R}^2 .