Examen

durée: 2h

La calculatrice est interdite

IMPORTANT : Pour obtenir les points aux questions, vous devez rédiger de façon rigoureuse les démonstrations et justifier précisément toutes vos affirmations.

Questions de cours (8 pts)

Soit *I* un intervalle ouvert.

- 1. Soit f une fonction définie sur I. Soit $x_0 \in I$. Donner la définition de f est dérivable en x_0 .
- 2. Démontrer en utilisant cette définition que $f(x) = \sqrt{x}$ est dérivable en tout $x_0 \in]0, +\infty[$.
- 3. Soit f une fonction constante sur I. Démontrer que f est dérivable sur I et que sa dérivée est nulle.
- 4. Réciproquement : Soit f une fonction dérivable sur I de dérivée nulle. Démontrer que f est constante sur I.
- 5. Donner un exemple de fonction définie sur $\mathbb{R} \setminus \{0\}$, non constante et dont la dérivée est nulle.
- 6. Supposons que f est une fonction continue et dérivable sur un segment [a;b] et que la borne supérieure de f est atteinte en $c \in]a;b[$. Démontrer que f'(c)=0.

Exercice 1 (3 pts)

- 1. Donner le développement limité à l'ordre 2 en 0 de $x\mapsto \exp(x^2)-\cos x$.
- 2. Donner un équivalent de la suite $(u_n)_{n\in\mathbb{N}^*}$ définie par $u_n = \exp(\frac{1}{n^2}) \cos(\frac{1}{n})$.
- 3. Donner la limite de la suite $(v_n)_{n\in\mathbb{N}^*}$ définie par $v_n=n^2\Big(\exp(\frac{1}{n^2})-\cos(\frac{1}{n})\Big)$.

Exercice 2 (4 pts)

Soit la fonction f définie par $f(x) = \ln(1+x)$.

- 1. Donner l'ensemble de définition de f.
- 2. Calculer les dérivées f', f'', $f^{(3)}$ et $f^{(4)}$.
- 3. Donner la formule de Taylor-Lagrange pour f(x) à l'ordre 3 en 0 (reste à l'ordre 4).
- 4. Quelle inégalité permet-elle de démontrer?

Exercice 3 (5 pts)

Soit la fonction f définie pour tout $x \in [-1, +\infty[$ par $f(x) = xe^x$.

- 1. Démontrer que f est une bijection de $[-1; +\infty[$ sur un ensemble à préciser.
- 2. Tracer les courbes représentatives de f et f^{-1} .
- 3. Donner f(1) et $f^{-1}(e)$.
- 4. Quel est l'ensemble de dérivabilité de f^{-1} ?
- 5. Rappeler la formule permettant de calculer $(f^{-1})'(y)$ et calculer $(f^{-1})'(e)$.