UNIVERSITE DE BOURGOGNE

U.F.R. Sciences et Techniques

Filière: Licence 3 Informatique

Année 2021-2022 13 juin 2022

Session: 2

EPREUVE: Langages Formels et Compilation

Durée: 2 h 00 – (documents papiers - sauf livres - autorisés; appareils électroniques interdits)

Les exercices sont indépendants. Le barème est donné à titre indicatif.

Exercice 1 - 5 points

Soit la grammaire G1 = ($\{S, X, Y\}$, $\{a, b, c\}$, $S \rightarrow ac|aXc, X \rightarrow aXc|b|bY, Y \rightarrow b|bY\}$)

- 1. Quel est le langage reconnu?
- 2. Mettez cette grammaire sous forme normale de Greibach.
- 3. A partir de la grammaire obtenue, donnez un automate à pile reconnaissant les mots du langage par pile vide.

Exercice 2 - 5 points

Soit la grammaire suivante :

 $G2 = (\{S, A, B, C, X\}, \{a, b, c\}, S, \{S \rightarrow ABC, A \rightarrow a \mid aA, B \rightarrow Ab \mid ABb, C \rightarrow \lambda \mid XBc \mid XBCc, bXa \rightarrow Xab, aXa \rightarrow aa\})$

- 1. De quel type est cette grammaire ? Justifiez votre réponse.
- 2. Donnez 3 mots engendrés par cette grammaire, et les dérivations permettant de les obtenir.
- 3. Quel est le langage reconnu?

Exercice 3 - 4 points

Soit la machine de Turing T3 = $(\{q_0, q_1, q_2, q_3, q_4, q_5, q_6\}, \{a,b\}, \{a,b,X,Y, \square\}, \delta, q_0, \{q_6\})$ avec δ définie par :

(1) δ (q ₀ ,a)=(q ₁ ,X,D)	(6) δ (q ₂ ,a)=(q ₃ ,Y,G)	(11) δ (q ₄ ,a)=(q ₁ ,X,D)
(2) δ (q ₁ ,a)=(q ₁ ,a,D)	(7) δ (q ₃ ,Y)=(q ₃ ,Y,G)	(12) δ (q ₄ ,b)=(q ₅ ,b,D)
(3) δ (q ₁ ,b)=(q ₂ ,b,D)	(8) δ (q ₃ ,b)=(q ₃ ,b,G)	(13) δ (q ₅ ,b)=(q ₅ ,b,D)
(4) δ (q ₂ ,b)=(q ₂ ,b,D)	(9) δ (q ₃ ,a)=(q ₃ ,a,G)	(14) δ (q ₅ ,Y)=(q ₅ ,Y,D)
(5) δ (q ₂ ,Y)=(q ₂ ,Y,D)	(10) δ (q ₃ ,X)=(q ₄ ,X,D)	(15) δ (q ₅ , \square)=(q ₆ ,Y,D)

- 1. Donnez toutes les étapes de l'analyse du mot aba avec cette machine de Turing.
- 2. Quel est le langage reconnu par cette machine?

Exercice 4 - 6 points (à rendre sur une feuille à part)

On veut créer un code identifiant des objets, sous la forme d'une grammaire dont les mots seraient $L(G) = \{a^n b^m c^p, n \neq m \neq p\}$, où les symboles de a sont des lettres alphabétiques en majuscules ou minuscules, les symboles de b sont des chiffres et les symboles de c sont dans l'ensemble $\{\#?^*-\}$

- 1. Donnez l'expression régulière des mots de la forme $a^nb^mc^p$ avec n, m, p quelconques mais ≥ 1 .
- 2. Construisez un programme Lex qui permette de détecter **chaque** symbole *a*, *b*, *c* de L(G). Utilisez des définitions régulières.
- 3. Construisez le programme Yacc qui permette de vérifier les mots ainsi que la contrainte $n \neq m \neq p$. Lex n'effectue aucun calcul, ceux-ci doivent être effectués dans les actions de Yacc, sans utiliser de variables du langage C.
- 4. Quelles sont les commandes de compilation à effectuer ?

Exemple de mots et sorties correspondantes :

fzffzj0123#### \rightarrow total = 14, nombre de a=6, nombre de b=4, nombre de c=4, incorrect fzffzj0123# \rightarrow total = 11, nombre de a=6, nombre de b=4, nombre de c=1, correct ezaqdf3aerg \rightarrow erreur, syntax error