L1 Mah 13

Université de Bourgogne UFR Sciences et Techniques Année 2019-2020 Janvier 2020

Logique et Algèbre 1 Examen

Question de cours 1.

- (1) Soit $n \in \mathbb{N}^*$. Donner la définition de racine n-ième d'un nombre complexe.
- (2) Soient n un entier ≥ 2 et $z = \rho e^{i\theta}$ un nombre complexe non nul écrit sous forme exponentielle. Montrer que les racines n-ièmes de z sont $\omega_0, \omega_1, \ldots, \omega_{n-1}$, où

$$\omega_k = \rho^{1/n} e^{i\frac{\theta + 2k\pi}{n}}, \quad k = 0, 1, \dots, n - 1.$$

(Attention: nous ne demandons pas de montrer que $\omega_k \neq \omega_\ell$ pour $k, \ell \in \{0, 1, \dots, n-1\}$, $k \neq \ell$.)

Question de cours 2.

- (1) Soient $a, b \in \mathbb{Z}^*$. Donner la définition de plus grand diviseur commun de a et b, noté $\operatorname{pgcd}(a, b)$.
- (2) Soient $a, b \in \mathbb{Z}^*$. Montrer que, si a divise b, alors $\operatorname{pgcd}(a, b) = |a|$.
- (3) Soient $a, b \in \mathbb{N}^*$ et b = qa + r la division de a par b. Montrer que $\operatorname{pgcd}(a, b) = \operatorname{pgcd}(b, r)$.

Exercice 1. Résoudre dans C l'équation suivante :

(E)
$$Z^2 - (5+2i)Z + 19 - 7i = 0$$
.

(On pourra utiliser l'égalité $73^2 = 5329$.)

Exercice 2.

- (1) Déterminer le module et un argument de $\omega = \frac{1-i\sqrt{3}}{1-i}$.
- (2) Déterminer l'ensemble des $z \in \mathbb{C}$ tels que $z^3 = \omega^3$. On donnera ces nombres écrits sous forme exponentielle (c'est-à-dire sous la forme $z = \rho e^{i\theta}$) et sous forme cartésienne (c'est-à-dire sous la forme z = a + ib).

Exercice 3. Résoudre l'équation entière suivante :

(E)
$$39X + 108Y = 15$$
.

Exercice 4. Montrer que, pour tout $n \in \mathbb{N}$, 7 divise $2^{(4^n)} + 5$.