UNIVERSITE DE BOURGOGNE

Année 2018-2019 Vendredi 10 mai 2019

UFR Sciences et Techniques.

Filière: Licence 2 Maths/Physique - Physique - Physique/Chimie

Session: 1

CONTROLE TERMINAL

Optique matricielle & Photométrie Phys4C

Durée 2h00 - Sans document, calculatrice autorisée. Téléphones portables éteints

Les 3 exercices sont indépendants et peuvent être traités dans un ordre indifférent.

Exercice I: Oculaire d'Huyghens Temps maximal conseillé: ≈ 1h

On se propose d'étudier un oculaire d'Huyghens (<u>placé dans l'air</u>) constitué d'une lentille mince convergente L_1 de centre E de distance focale $f_i^{(1)}$ et d'une deuxième lentille mince convergente également L_2 de centre S et de distance focale $f_i^{(2)}$, avec $\overline{ES} = e$. Ces deux lentilles constituent un doublet (3, 2, 1), c'est-à-dire que $\frac{f_i^{(1)}}{3} = \frac{e}{2} = \frac{f_i^{(2)}}{1} = a$.

- 1. Déterminez la matrice de transfert $T(\overline{ES})$ du système en exprimant chaque terme en fonction du paramètre a uniquement. Quelle est la vergence du système? Déduisez-en les distances focales objet f_o et image f_i du système. Le système est-il convergent ou divergent?
- 2. On prend $a=3\,cm$. Faites les applications numériques de la question précédente : donnez les valeurs des coefficients de la matrice, la vergence et les distances focales du doublet.
- 3. Rappelez sans démonstration la forme générale de la matrice de conjugaison $T(\overline{A_o A_i})$ entre deux points conjugués A_o et A_i sur l'axe optique.
- 4. Exprimez cette même matrice d'une autre façon en faisant intervenir la matrice $T(\overline{ES})$ et en posant $z_o = \overline{EA_o}$ et $z_i = \overline{SA_i}$.
- 5. Un objet de hauteur 2 cm est placé en A_o tel que $z_o = -4a$. Déterminez les caractéristiques de son image (position et taille).
- 6. Rappelez la définition des plans et points principaux d'un système optique. Utilisez les résultats de la question 3 pour déterminer la position des points principaux H_o et H_i en calculant les distances $\overline{EH_o}$ et $\overline{SH_i}$: vous donnerez d'abord leurs expressions littérales en fonction de a uniquement puis leur valeurs numériques.
- 7. Déduisez-en la position du foyer objet F_o et du foyer image F_i du doublet.

Exercice II: Association d'une lentille et d'un miroir Temps maximal conseillé : \approx 30 min

On considère une lentille mince (convergente) de distance focale image f_i .

1. Déterminez la matrice de transfert entre les deux plans focaux $T(\overline{F_oF_i})$.

On place maintenant un miroir plan dans le plan focal image de la lentille.

- 2. Calculez la matrice de transfert de l'ensemble lentille + miroir en considérant que le plan de front d'entrée et le plan de front de sortie sont confondus avec le plan focal objet, autrement dit calculez la matrice $T(\overline{F_oF_o})$.
- 3. Quelle est la vergence du système ainsi obtenu? Comment appelle-t-on un tel système?

Exercice III: Photométrie Temps maximal conseillé: ≈ 30 min

- 1. Un projecteur comporte une source de luminance uniforme L et de surface apparente $s=2cm^2$. On considère que cette source émet dans toutes les directions avec I= constante, et qu'il existe un système de réflecteurs qui renvoie toute la lumière dans la direction souhaitée. La source est placée à une distance D d'un système optique dont le facteur de transmission, défini comme étant le rapport du flux transmis par le système et du flux incident est $T=\frac{F_{trans}}{F_{inc}}=0.85$. Ce projecteur éclaire un écran de surface $S_e=16\,m^2$ et l'éclairement moyen vaut $E_{moy}=680\,lux$.
 - (a) Calculez le flux lumineux au niveau de l'écran.
 - (b) Déduisez-en le flux lumineux émis par la source.
 - (c) Calculez la luminance de la source.
 - (d) Calculez la puissance de la lampe, sachant que son efficacité lumineuse vaut $\eta = 32 lm.W^{-1}$.
- 2. Une table de travail carrée de côté a=3m est éclairée par une lampe S supposée ponctuelle dont la projection orthogonale sur la table coïncide avec le milieu H d'un de ses côtés. L'intensité lumineuse isotrope de la lampe est $I=900\ cd$.
 - (a) Exprimez l'éclairement E_c au centre C de la table en fonction de I, de a et de l'angle $\alpha = \widehat{CSH}$.
 - (b) Calculez cet éclairement E_c pour $\alpha = 45^{\circ}$.