Examen de Mathématiques Session 1 - Math4B

Exercice 1 (Questions de cours) :

- 1. Caractérisations des projecteurs orthogonaux : Soit p un projecteur d'un espace préhilbertien E. Les propriétés suivantes sont équivalentes :
 - (i) p est un projecteur orthogonal.
 - (ii) $\forall (x,y) \in E^2 \ \langle p(x) \mid y \rangle = \langle x \mid p(y) \rangle$.
 - (iii) $\forall x \in E, || p(x) || \le || x ||$.
- 2. Soient E un espace euclidien, F un sous-espace de E et $f \in \mathcal{L}(E)$ et f^* son adjoint alors
 - (a) $\operatorname{Im}(f^*) = (\ker f)^{\perp}$, $\ker f^* = (\operatorname{Im} f)^{\perp}$ et $\operatorname{rg}(f) = \operatorname{rg}(f^*)$
 - (b) F est stable par f si et seulement si F^{\perp} est stable par f^* .

Exercice 2 (Une isométrie en dimension 3): Soient $E = \mathbb{R}^3$ euclidien, $\mathcal{B} = (e_1, e_2, e_3)$ la base canonique et f un endomorphisme de E dont la matrice associée dans la base \mathcal{B} est $A = \frac{1}{9} \begin{pmatrix} 8 & 4 & a \\ -4 & 7 & b \\ 1 & c & 8 \end{pmatrix}$.

- 1. Montrer qu'il existe un unique triplet $(a, b, c) \in \mathbb{R}^3$ tel que f soit un automorphisme orthogonal. Donner les valeurs de a, b, c. On prendra ces valeurs pour la suite.
- 2. Déterminer le sous-espace $F = \{x \in E \mid f(x) = x\}$ des vecteurs invariants par f. Préciser sa dimension et en donner une base orthonormée.
- 3. Montrer que f est une rotation et préciser : son axe, le sinus et le cosinus de son angle θ .

Exercice 3 (Réduction d'un endomorphisme) : Soient E un espace euclidien de dimension 3, $\mathcal{B}=(i,j,k)$ une base orthonormale et g un endomorphisme de E dont la matrice associée dans la base \mathcal{B} est $B=\frac{1}{3}\begin{pmatrix}2&1&1\\1&2&-1\\1&-1&2\end{pmatrix}$.

- 1. Justifier que l'endomorphisme g est diagonalisable.
- 2. Donner la matrice associée à $g\circ g$ dans la base $\mathcal B$ et déduire le polynôme caractéristique de g.
- 3. Trouver une base orthonormale de vecteurs propres de g et donner une interprétation géométrique de g.

Exercice 4 (Un endomorphisme symétrique sur l'espace des polynômes) : Soient $n \in \mathbb{N}^*$ et $E = \mathbb{R}_n[X]$. Pour tout $n \in \mathbb{N}$, l'espace vectoriel des polynômes de degré au plus n. On définit le produit scalaire $\langle . | . \rangle$ sur $E \times E$ par :

$$\forall (P,Q) \in E \times E \qquad \langle P \mid Q \rangle = \int_{-1}^{1} (1-t^2) P(t) Q(t) \mathrm{d}t.$$

Pour tout élément $P \in E$ on pose $\varphi(P) = ((X^2 - 1)P)''$.

- 1. Montrer que φ est un endomorphisme de E.
- 2. Montrer que φ est un endomorphisme symétrique de E.

Exercice 5 (Endomorphisme antisymétrique) : Soit E un espace euclidien et f un endomorphisme de E.

- 1. Montrer l'équivalence des quatre propositions suivantes :
 - (a) $f^* = -f$. (b) $\forall x \in E$, on a $\langle x \mid f(x) \rangle = 0$. (c) $\forall (x,y) \in E^2$, on a $\langle x \mid f(y) \rangle = -\langle f(x) \mid y \rangle$.
 - (d) La matrice A représentant f dans une base orthonormale de E est antisymétrique : ${}^tA = -A$.

Un endomorphisme f vérifiant l'une de ces quatre propositions est dit antisymétrique.

- 2. Montrer que si f est antisymétrique et si $\lambda \in \mathbb{R}$ est valeur propre de f alors $\lambda = 0$.
- 3. Montrer que si f est antisymétrique alors $\ker f = (\operatorname{Im} f)^{\perp}$.

La suite est hors barême

Dans la suite, on suppose que f est antisymétrique et bijectif et on pose $g = f \circ f$.

- 4. Montrer que g est un endomorphisme symétrique.
- 5. Sointt $\mu \in \mathbb{R}$ une valeur propre de g et $a \in E \setminus \{0_E\}$ un vecteur propre unitaire associé à μ .
 - (a) Montrer que $\langle g(a)\mid a\rangle=\mu\mid\mid a\mid\mid^2=-\mid\mid f(a)\mid\mid^2$. En déduire que $\mu<0.$
 - (b) Justifier que les vecteurs a et f(a) ne sont pas colinéaires.
 - (c) On pose F = Vect(a, f(a)). Montrer que F et F^{\perp} sont stables par f.
 - (d) On pose $\alpha = \sqrt{-\mu}$. Montrer qu'il existe $b \in F$ tel que (a,b) soit une base orthonormale de F et que la matrice associée à l'endomorphisme induit par f sur F est de la forme $\begin{pmatrix} 0 & -\alpha \\ \alpha & 0 \end{pmatrix}$.