Examen 6 Mai 2019

Les documents et les calculatrices ne sont pas autorisés. Le barème est indicatif.

Questions de cours. (3 points). Soit $(E, \|\cdot\|)$ un espace vectoriel normé.

- 1. Donner la definition de suite convergente dans E.
- 2. Montrer que toute suite convergente d'éléments de E est bornée.
- 3. Soit A une partie de E. Donner la définition de \mathring{A} l'intérieur de A. L'ensemble \mathring{A} est-il ouvert? Justifiez votre réponse.

Exercice 1. (Intégrales généralisées - 3 points). Soit $f:[0,+\infty[\to\mathbb{R}]$ une fonction continue et bornée.

- 1. Montrer que les integrales $\int_0^{+\infty} \frac{f(x)}{1+x^2} dx$ et $\int_0^{+\infty} \frac{f(1/x)}{1+x^2} dx$ sont convergentes.
- 2. Montrer $\int_0^{+\infty} \frac{f(x)}{1+x^2} dx = \int_0^{+\infty} \frac{f(1/x)}{1+x^2} dx$.
- 3. Pour tout $n \in \mathbb{N}$, calcular $\int_0^{+\infty} \frac{1}{(1+x^2)(1+x^n)} dx$ et $\int_0^{+\infty} \frac{x^n}{(1+x^2)(1+x^n)} dx$.

Exercice 2. (Série de fonctions - 5 points). Pour tout $n \in \mathbb{N}^*$, on définit la fonction $f_n : \mathbb{R} \to \mathbb{R}$ donnée par

$$f_n(x) = \frac{x^2}{x^4 + n}.$$

- 1. Montrer que la série de fonctions $\sum_{n} (-1)^n f_n$ converge simplement sur \mathbb{R} .
- 2. Montrer que la suite de fonctions $(f_n)_{n\in\mathbb{N}^*}$ converge uniformément vers 0 sur \mathbb{R} . En déduire que la série $\sum_{n} (-1)^n f_n$ converge uniformément sur \mathbb{R} .
- 3. La série $\sum_{n} (-1)^n f_n$ converge-t-elle normalement sur \mathbb{R} ? Et sur l'intervalle [1,3]? Justifiez votre réponse.
- 4. Pour tout $x \in \mathbb{R}$, soit $S(x) = \sum_{n=1}^{+\infty} (-1)^n f_n(x)$. Montrer que S est continue sur \mathbb{R} .

Exercice 3. (Espaces vectoriels normés - 10 points).

1. Soit E l'espace vectoriel des fonctions de classe C^1 sur [0,1] à valeurs dans \mathbb{R} . Pour $f \in E$, on pose

$$N(f) = |f(0)| + \sup_{x \in [0,1]} |f'(x)| \text{ et } ||f||_{\infty} = \sup_{x \in [0,1]} |f(x)|.$$

- (a) Montrer que N définit une norme sur E.
- (b) Montrer que pour tout $f \in E$, $||f||_{\infty} \leq N(f)$. Indication: on pourra utiliser l'inégalité des accroissements finis $|f(b) f(a)| \leq \max_{t \in [a,b]} |f'(t)| |b-a|$.
- (c) Pour tout $n \in \mathbb{N}$ et pour tout $x \in [0, 1]$, soit $f_n(x) = \frac{1}{n} \sin(nx)$. Calculer $N(f_n)$ et $||f_n||_{\infty}$ pour tout $n \in \mathbb{N}$. En déduire que les normes N et $||\cdot||_{\infty}$ ne sont pas équivalentes.
- 2. On considère \mathbb{R}^2 muni de la norme définie par $||(x,y)||_1 = |x| + |y|$.
 - (a) Dessiner la boule fermée de centre (1,0) et de rayon 2.
 - (b) L'ensemble $\{(x,y) \in \mathbb{R}^2, |x| < 1, |y| \le 1\}$ est-il ouvert? Est-il fermé? Est-il compact? Justifiez votre réponse.
 - (c) Montrer que l'ensemble $\{(x,y) \in \mathbb{R}^2, x^2 + y^4 = 1\}$ est compact.